
SCHMELZMETALL

Product overview HOVADUR® K

www.schmelzmetall.com

HOVADUR® K

Special Alloys for Plastic Injection Moulds

Tradename	HOVADUR® K 150	HOVADUR® K 220	HOVADUR® K 230	HOVADUR® K 250	HOVADUR® K 265	HOVADUR® K 350
Chemical composition (nominal values in % of weight)						
Cr	0.8	0.4	_	_	_	_
Zr	0.08	_	_	_	_	_
Со	_	_	< 0.3	1.0	1.0	Co + Ni 0.3
Ni	_	2.4	1.8	1.0	1.0	
Ве	_	_	0.4	0.5	0.5	1.9
Al	_	_	_	_	_	_
Si	< 0.1	0.7	< 0.2	< 0.2	< 0.2	< 0.1
Fe	< 0.08	_	< 0.2	< 0.2	< 0.2	< 0.1
Others	< 0.2	_	_	_	_	< 0.5
Cu	Remainder	Remainder	Remainder	Remainder	Remainder	Remainder
Mechanical properties (nominal values at 20 °C)		\				
ness Brinell 1) HB	*) 115–175	190–240	220–270	220–270	260–310	350–410
le strength 2) N/mm² (MPa)	*) 350–550	650–800	680–800	680–850	750–900	1150–1350
yield strength 2) N/mm² (MPa)	*) 250–450	500–650	540–750	550–750	650–800	1000–1250
gation (A5) 2) %	*) 15–20	10–15	8–15	8–15	8–14	3–8
c modulus N/mm² (MPa)	125,000	140,000	135,000	135,000	135,000	135,000
Physical properties (nominal values at 20 °C)						
rific weight g/cm³	8.90	8.84	8.85	8.85	8.85	8.30
mal conductivity W/mK	310–340	190–240	270–320	240–275	230–250	160
rical conductivity 1) MS/m	44–51	min. 22	min. 38	min. 25	min. 28	min. 16
mal expansion coefficient x 10 ⁻⁶ /°K	17.0	16.2	17.2	17.2	17.2	17.0
ese properties depend on the condition (hot or cold formed) and the greed properties (In case of different opinions, hardness is calculated a ssociated properties (Strength values will only be proved if ordered by	s the average of 3 randomly located mea	isurings)			materials are for descriptive purposes o properties or application require written	

Forms of delivery						
Round drawn	•		•		•	•
Round forged	•	•	•	•	•	•
Flat, square, hexagonal drawn	•				•	
Flat, square forged	•	•	•	•	•	•
Plates rolled	•					
Plates forged	•	•	•	•	•	•
Pieces cut from round bar/plate, rough	•	•	•	•	•	•
Pieces cut from round bar/plate, premachined	•	•	•	•	•	•
Max. weight of a forged piece	1200 kg					
Description of material/Application examples	HOVADUR® K 150	HOVADUR® K 220	HOVADUR® K 230	HOVADUR® K 250	HOVADUR® K 265	HOVADUR® K 350

shows especially high electrical

and thermal conductivity. High thermal strength is typical for this alloy.

Application

Cooling plates, heat conducting parts and parts for moulds. Moulds and cooling inserts for metal casting as well as covers for centrifugal casting moulds.

shows high electrical and thermal conductivity combined with high hardness and strength.

Application

Cooling inserts, mould inserts and mould cores especially for overcoming thermal problems.

shows very high electrical and thermal conductivity combined with high hardness and strength.

Application

Mould cores, mould inserts especially for overcoming extreme thermal problems.

shows high electrical and thermal conductivity combined with higher hardness and strength.

Application

Mould cores, mould inserts and hot channel nozzles especially for overcoming thermal problems.

shows high electrical and thermal conductivity combined with very high hardness and strength.

Application

Mould cores, mould inserts and hot channel nozzles especially for overcoming extreme thermal problems.

shows good electrical and thermal conductivity combined with extremely high hardness and strength.

Application

Mould cores, mould inserts and hot channel nozzles for overcoming thermal problems. Due to its extremely high hardness, very high clamping forces can be transmitted.

All our alloys HOVADUR® K are tested and certified as being safe concerning contact with food.